Simultaneous Approximation of a Uniformly Bounded Set of Real Valued Functions

Şermin Atacik
Department of Mathematics, Cukurova University, P.K. I7l, Adana, Turkey
Communicated by G. Meinardus
Received March 13, 1984

Let F be a set of uniformly bounded, real valued functions on $[a, b]$ and S a non-empty family of real valued functions on $[a, b]$. If there exists an $s^{*} \in S$ such that

$$
\inf _{s \in S} \sup _{f \in F}\|f-s\|=\sup _{f \in F}\left\|f-s^{*}\right\|,
$$

then s^{*} is called a best simultaneous approximation to F. This definition was given by Diaz and McLaughlin [1]. They proved that best simultaneous approximation of F is equivalent to best simultaneous approximation of the two functions F^{+}and F^{-}where

$$
F^{+}=\inf _{\delta>0} \sup _{0 \leqslant|x-y|<\delta} \sup _{f \in F} f(y)
$$

and

$$
F^{-}=\sup _{\delta>0} \inf _{0 \leqslant|x-y|<\delta} \inf _{f \in F} f(y) .
$$

In this note, using a different approach, we show that best simultaneous approximation to F is equivalent to best simultaneous approximation of the two functions $\sup _{f \in F} f$ and $\inf _{f \in F} f$. The same result is also obtained for simultaneous approximation of F in the L_{1} norm.

Theorem 1. If $s^{*} \in S$ is a best approximation to F then

$$
\begin{equation*}
\sup _{f \in F}\left\|f-s^{*}\right\|=\left\|\left|\left(\sup _{f \in F} f+\inf _{f \in F} f\right) / 2-s^{*}\right|+\left(\sup _{f \in F} f-\inf _{f \in F} f\right) / 2\right\| . \tag{1}
\end{equation*}
$$

We first prove the following Lemma.

Lemma 1. Let A be a bounded set of real numbers and r be any real number. Then

$$
\begin{equation*}
\sup _{a \in A}|a-r|=|(\alpha+\beta) / 2-r|+(\alpha-\beta) / 2 \tag{2}
\end{equation*}
$$

where $\alpha=\sup _{a \in A} a$ and $\beta=\inf _{a \in A} a$.
Proof. It is sufficient to prove that

$$
\begin{equation*}
\sup _{u \in A}|a|=|(\alpha+\beta) / 2|+(\alpha-\beta) / 2 \tag{3}
\end{equation*}
$$

In fact, (2) follows by considering $A-r$ instead of A.
Case 1. If $\alpha+\beta>0$ then $\alpha>-\beta=-\inf _{a \in A} a=\sup _{a \in \mathcal{A}}(-a)$. Hence $\sup _{a \in A}|a|=\sup _{a \in A} a=\alpha$. It is clear that in this case the right-hand side of (3) also equals α.

Case 2. If $\alpha+\beta<0$ then $\alpha<-\beta=-\inf _{a \in A} a=\sup _{a \in A}(-a)$. Hence $\sup _{a \in A}|a|=\sup _{a \in A}(-a)=-\beta$. In this case the right side of (3) alsoequals $-\beta$. Hence (3) holds.

Proof of Theorem 1. Let $s \in S$ and $x \in[a, b]$. Then by Lemma 1

$$
\begin{align*}
\sup _{f \in F}|f(x)-s(x)|= & \left|\left\{\sup _{f \in F} f(x)+\inf _{f \in F} f(x)\right\} / 2-s(x)\right| \\
& \left.+\sup _{f \in F} f(x)-\inf _{f \in F} f(x)\right\} / 2 . \tag{4}
\end{align*}
$$

Now, we take the supremum of both sides of (4) over $[a, b]$:

$$
\sup _{f \in F}\|f-s\|=\left\|\left|\left(\sup _{f \in F} f+\inf _{f \in F} f\right) / 2-s\right|+\left(\sup _{f \in F} f-\inf _{f \in F} f\right) / 2\right\| .
$$

Then by taking the infimum over S we obtain (1). This completes the proof.

If f_{1} and f_{2} are any two real valued functions on $[a, b]$ then $\forall x \in[a, b]$ $\sup _{i=1,2} f_{i}(x)+\inf _{i=1,2} f_{i}(x)=f_{1}(x)+f_{2}(x) \quad$ and $\quad \sup _{i=1,2} f_{i}(x)-\inf _{i=1,2}$ $f_{i}(x)=\left|\left\{f_{1}(x)-f_{2}(x)\right\} / 2\right|$. Therefore, we obtain the following result, which had been proven in [2], as a special case of Theorem 1:

$$
\begin{align*}
\inf _{s \in S} & \max \left\{\left\|f_{1}-s\right\|,\left\|f_{2}-s\right\|\right\} \\
& =\inf _{s \in S}\left\|\left|\left(f_{1}+f_{2}\right) / 2-s\right|+\left(f_{1}-f_{2}\right) / 2\right\| \tag{5}
\end{align*}
$$

Theorem 2. If s^{*} is a best simultaneous approximation to F, then

$$
\begin{equation*}
\sup _{f \in F}\left\|f-s^{*}\right\|=\max \left\{\left\|\sup _{f \in F} f-s^{*}\right\|,\left\|\inf _{f \in F} f-s^{*}\right\|\right\} . \tag{6}
\end{equation*}
$$

That is, s^{*} is a best simultaneous approximation to F if and only if it is a best simultaneous approximation to $\sup _{f \in F} f$ and $\inf _{f \in F} f$.

$$
\begin{aligned}
& \text { Proof. Substituting } f_{1}=\sup _{f \in f} f \text { and } f_{2}=\inf _{f \in f} f \text { in (5) we get } \\
& \qquad \begin{array}{c}
\max \left\{\sup _{f \in F} f-s^{*}\|,\| \inf _{f \in F} f-s^{*} \|\right\} \\
=\left\|\left|\left(\sup _{f \in F} f+\inf _{f \in F} f\right) / 2-s^{*}\right|+\left(\sup _{f \in F} f-\inf _{f \in F} f\right) / 2\right\| .
\end{array}
\end{aligned}
$$

Together with (1) we obtain (6).
Next we consider simultaneous approximation problem in L_{1} norm. Now, let F be a set of uniformly bounded integrable functions on $[a, b]$ and S be a non-empty set of integrable functions on $[a, b]$. Then $s^{*} \in S$ is said to be a best simultaneous approximation to F in L_{1} norm if

$$
\inf _{s \in S} \int_{a}^{b} \sup _{f \in F}|f(x)-s(x)| d x=\int_{a}^{b} \sup _{f \in F}\left|f(x)-s^{*}(x)\right| d x
$$

By integrating (4) we obtain the following theorem.
Theorem 3. If $s^{*} \in S$ is a best simultaneous approximation to F in L_{1} norm then

$$
\begin{align*}
& \int_{a}^{b} \sup _{f \in F}\left|f(x)-s^{*}(x)\right| d x \\
& \quad=\int_{a}^{b}\left|\left(\sup _{f \in F} f+\inf _{f \in F} f\right) / 2-s^{*}(x)\right| d x+\int_{a}^{b}\left(\sup _{f \in F} f-\inf _{f \in f} f\right) / 2 d x . \tag{7}
\end{align*}
$$

When we consider only two functions f_{1} and f_{2} it is shown in [3] that s^{*} is a best simultaneous approximation to f_{1} and f_{2} in L_{1} norm if

$$
\begin{align*}
& \int_{a}^{b} \max \left\{\left|f_{1}(x)-s^{*}(x)\right|,\left|f_{2}(x)-s^{*}(x)\right|\right\} d x \\
& \quad=\int_{a}^{b}\left|\left(f_{1}+f_{2}\right) / 2-s^{*}\right| d x+\int_{a}^{b}\left|\left(f_{1}-f_{2}\right) / 2\right| d x \tag{8}
\end{align*}
$$

Here, we see that this result is a special case of Theorem 3.

Theorem 4. s^{*} is a best simultaneous approximation to F in L_{1} norm if and only if

$$
\begin{align*}
& \int_{a}^{\prime \prime} \sup _{f \in F}\left|f(x)-s^{*}(x)\right| d x \\
& \quad=\int_{a}^{n} \max _{\left\{\left|\sup _{f \in F} f(x)-s^{*}(x)\right|,\left|\inf _{f \in F} f(x)-s^{*}(x)\right|\right\} d x .} . \tag{9}
\end{align*}
$$

That is, simultaneous approximation to F in L_{1} norm is equivalent to the simultaneous approximation of the two functions $\sup _{f \in F} f$ and $\inf _{f \in f} f$ in L_{1} norm.

Proof. We substitute $f_{1}=\sup _{f \in F} f$ and $f_{2}=\inf _{t \in f} f$ in (8). Then together with (7) we obtain (9).

References

1. J. B. Diaz and H. W. McLaughlin. Simultaneous approximation of a set of bounded real functions. Math. Comp. 23 (1969). 583-594.
2. J. B. Diaz and H. W. Mclalghln, On simultaneous Chebyshev approximation and Chebyshev approximation with additive weight. J. Approx. Theory 6 (1972), 68-71.
3. G. M. Phillips and B. N. Sahiffy, On best simultaneous approximation in the L_{1} and L_{2} norms, in "Theory of Approximation with Applications" (Law and Sahney, Eds.I. pp. 213-219, Academic Press. New York, 1976.
